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3 Computation and graphics

The Euler-Lagrange equations for the potential of the Coates spiral have been
solved, giving the trajectories of a mass m in the potential energy
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defined in the space (r1,¢). The factor of 1/2 has been introduced to obtain
the radial force
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In observer space (r,¢) the variable r; has to be replaced by r/+/m(r). The
potential has to be re-defined appropriately in m space and gives an additional
force term:
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The additional force term is caused by dm(r)/dr and represents a spacetime or
vacuum force inferred by m theory.

We have solved the Evans-Eckardt equations in Lagrangian form in four
cases:
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1. non-relativistic limit with m(r)=1,

2. non-relativistic limit with exponential m(r),
3. ultra-relativistic limit with m(r)=1,

4. ultra-relativistic limit with exponential m(r).

The equations of motion are those of UFT 420 but computed for the potential
(41). The m function was that of Eq. (79) in UFT 419. As already discussed in
earlier papers, the derivative of m(r) introduces chaotic behaviour and makes
the results very sensitive to the initial conditions. It was possible to use the
same initial conditions for cases 1, 2 and 4 but not for case 3. The resulting
orbits are graphed in Figs. 1-4. The non-realtivistic limit was realized by setting
the velocity of light ¢ to a high value. Obviously effects remain so that the spiral
in Fig. 1 has a crossing point. Using an m function m# 1 in Fig. 2 changes the
result drastically. The ultra-relativistic case in Fig. 3 changes the asymptote to
a completely different direction. Using the m function (Fig. 4), the direction is
changed again, including a crossing point similar to that in Fig. 1. The velocity
curve of case 4 is graphed in Fig. 5 (as a time trajectory). It is seen that
the velocity moves asymptotically to a constant value, as known experimentally
from spiral galaxies and refuting Einsteinian general relativity.

As an example in (71, ¢) space we have repeated the calculations of case 4
with potential (39) the corresponding equations of motion. It was quite difficult
to find non-trivial states, i.e. bound states in spiral-like form. One result is
graphed in Fig. 6 where the trajectory describes exactly one loop around the
centre. Recalculating the observer variable r according to

r=ryiy/m(r) (43)

shows that a deviation between both coordinates is visible only near to the
centre where the m function significantly differs from unity. The same effect
is seen for the angular momenta (Newtonian and relativistic) which differ only
in this region by a peak of the Newtonian value. A similar result holds for the
total energies (Fig. 8). It can be seen that the relativistic energy is a negative
constant, i.e. a bound state. Since the orbit is highly non-Newtonian, there is
a huge deviation when the mass moves near to the centre.
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Figure 1: Orbits of Coates spiral in non-relativistic limit with m(r)=1.
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Figure 2: Orbits of Coates spiral in non-relativistic limit with exponential m(r).
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Figure 3: Orbits of Coates spiral in ultra-relativistic limit with m(r)=1.
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Figure 4: Orbits of Coates spiral in ultra-relativistic limit with exponential
m(r).
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Figure 5: Velocity curve belonging to Fig. 4.
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Figure 6: Orbits of Coates spiral in space (r1, @), ultra-relativistic limit with
exponential m(r).
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Figure 7: Angular momenta of Coates spiral in Fig. 6.
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Figure 8: Total energies of Coates spiral in Fig. 6.



