380(2): Combined Gravitation and Electromagnetism, Biefeld Brown

This note gives a scheme of computation on page 7 by which the problem can be solved completely and in general. There are enough equations to find all the unknowns, given of course the skilful use of the computer by co author Horst Eckardt. The Biefeld Brown effect is explained straightforwardly by Eq. (14), which shows that an electric charge density can affect the gravitational scalar potential and therefore can affect g. I did a lit search on the Biefeld Brown effect, it has recently been studied by the U. S. Army Research Laboratory. This report can be found by googling Biefeld Brown effect”, site four. There are various configuration which can all be explained by Eq. (14) – asymmetric electrodes and so on. In the inverse r limit the total potential energy is given by Eq. (19). This gives the planar orbital equations on page 4 of the Note. These can be solved numerically to give some very interesting orbits using the methods of UFT378. The lagrangian in this limit is Eq. (29) and the hamiltonian is Eq. (30). These describe the orbit of a mass m and charge e1 around a mass M and charge e2. If Sommerfeld quantization is applied this method gives the Sommerfeld atom. Otherwise in the classical limit it desribes the orbit of one charge with mass around another. The equations are given in a plane but can easily be extended to three dimensions. Eqs. (31) to (34), solved simultaneously and numerically with Eqs. ((37) and (39), the antisymmetry conditions, are six equations in six unknowns for gravitation and six equations in six unknowns for electromagnetism. These equations give the spin connections and vector potentials in general (three Cartesian components each).


%d bloggers like this: