This note shows that the relevant field equations of ECE2 gravitation, Eqs. (13) and (14), reduce to the simple equation (12), which implies Eqs. (22), (23) and (24). Any Newtonian orbit can be aether engineered using Eqs. (27) and (28), with the kappa vector components as input parameters. Any ECE2 retrograde precession can be aether engineered from Eqs. (29) and (30), and any ECE2 forward precession can be aether engineered using Eqs. (31) and (32). The structure of the kappa vector was given in UFT318, and is defined in Eqs. (33) to (34) in terms of the tetrad vector q bold, spin connection vector omega bold and the length parameter r(0). These are the engineering variables. It ought to be possible to reproduce any observable orbit, and any observable precession. For example a two or three variable least means squares fit to any orbit can be used. I used this type of method in the far infra red in the early Omnia Opera papers, using a NAG least mean squares routine on an Elliott 4130 mainframe with 48 kilobytes of total memory and packs of cards. The Algol code is on www.aias.us So now it should be possible to implement such a method on any desktop using Maxima. The latter can also check the hand algebra as usual, and integrate the equations.

a378thpapernotes2.pdf

### Like this:

Like Loading...

*Related*

This entry was posted on May 20, 2017 at 12:57 pm and is filed under asott2. You can follow any responses to this entry through the RSS 2.0 feed.
Both comments and pings are currently closed.