This is found from the gravitational Navier Stokes equation (4), which is a particular case of the general Navier Stokes equation (8). The velocity field is given by Eq. (21) as derived in UFT363. The orbit is worked out entirely in terms of the radial component R sub r of the position element of fluid spacetime, its r derivative and second derivative, and its time derivative. Additional equations are available from fluid dynamics: notably the continuity equation and conservation of angular momentum. These can be developed in future notes, in the meantime model functions can be used. It is already known from Horst’s numerical analysis of yesterday and this morning that a fluid spacetime or aether gives a precessing orbit, a major discovery in my opinion. In this model a planet or object of mass m around an object of mass M moves in a fluid spacetime or aether. The structure of the theory is that of Cartan geometry.

a374thpapernotes5.pdf

### Like this:

Like Loading...

*Related*

This entry was posted on April 3, 2017 at 1:47 pm and is filed under asott2. You can follow any responses to this entry through the RSS 2.0 feed.
Both comments and pings are currently closed.