To Horst: Checked a sub phi a few times.

I have checked a sub phi (attached Note 369(4)) a few times and it is OK. To make sure, the last four lines of this note can be run through Maxima. In Note 369(5) a new general law is derived for the Cartan covariant derivative in any coordinate system. I am very interested in the ability of Maxima to solve simultaneous differential equations and also in the resulting graphics. Various external torques or forces can be applied to the gyroscope. Your method seems OK, and the simple method of UFT368 produces the Laithwaite result. Laithwaite was subjected to a grave miscarriage of justice. As you know, the earth is a symmetric top and its gyroscopic motions are important in climatology. So the new code can be applied to predict Milankowich cycles for example. We could apply various gravitational forces of the sun , moon and planets. This would be very interesting for UFT369. Having derived the spin connection in spherical polars, the Cartan torsion and curvature can be calculated, so the gravitational fields can be calculated. So this method and previous methods (UFT119) can be tied together. The big advance made in UFT368 is that the nutations and precessions can all be graphed. These are the causes of the climate changes of the Milankowich cycles. It will be interesting to try to see whether the climate warms or cools due to the nutations and precessions of the earth (a giant gyroscope). Your graphics are as usual of immediate interest. The canonical or general method of dealing with torques is given by the Euler equations in frame (1, 2, 3) of the principal moments of inertia. These can be transformed to frame (X, Y, Z) using a transformation matrix made up of the three rotation generator matrices defined by Euler. This is horrendously complicated but complication is no longer any problem. I was delighted as a young post graduate when I found that no matter how complicated my equations, the computer could deal with them (see early Omnia Opera papers). The Elliott 4130 at that time had 48 kilobytes of memory for the entire College and used cards and paper tape. Every time I used it I had to drive about three miles up and down the hill to the main campus. The Euler Langevin equations for example are appalling to solve by hand, but the computer could deal with them and compare them with far infra red data. In fact, they could be solved with your new code.

a369thpapernotes5.ZIP


%d bloggers like this: